
論文 DBSJ Letters Vol.4, No.4

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.4, No.4 1

A Proposal of Credit Transfer
System Using OWL in Education

Jiaji GUO1 Hiromi KOBAYASHI2

 This paper proposes a credit transfer system using Web
Ontology Language (OWL) between universities. Credit
transfer has been conducted mainly comparing and
transforming curricula among universities. Mutual 1 :1
comparisons are needed n(n-1)/2 among n universities.
We propose a credit transfer system using IEEE/ACM
Computing Curricula as intermediate curricula in the area
of computer science in order to reduce the number of
mutual comparisons to n. Two transformation methods are
presented for practical use of the curricula, which consist
of the matrix of courses and the body of knowledge with
teaching hours.

1. Introduction
The number of transfer students has increased into the

second year class or the third year class in Japanese
universities. These students have come from various
educational institutions such as junior colleges, vocational
schools, and foreign universities, recently. Credit transfer
is a puzzling problem that is often not administered by
faculty staff, but by professors in charge of admission
because this work requires knowledge of subjects. The
variety of transfer situations results engenders an
increased workload of professors. The simplest solution of
this problem is to admit the total amount of credits from a
sending institution to a receiving one. This method is valid
for liberal arts or general culture courses. However,
systematic study is recommended for professional
education or engineering courses. Consequently, some
remedy for the laborious work of matching courses
between the respective curricula of two institutions is
needed. In addition, the number of comparisons and
transformations is 2/)1(2 −= nnCn among curricula of n
institutions. To overcome this problem, we propose a credit
transfer system using IEEE/ACM Computing Curricula
2001 [1] (abbreviated as IEEE/ACM Curricula) as
intermediate curricula in the area of computer science.
The number of mutual transformations is reduced to n in
this system. IEEE/ACM Curricula may be regarded as a
de facto standard in the area of computer science because
the curricula of some universities are based on IEEE/ACM
Curricula; other institutions refer to these curricula.

1 Department of Information Media Technology, Tokai University.
5kkc1016@keyaki.cc.u-tokai.ac.jp
2 Regular Member. Department of Information Media Technology,
Tokai University. koba@tokai.ac.jp

We use an ontology description language Web Ontology
Language (OWL) [2–8] to aim at transferral between
curricula [semi]automatically. First, we propose a method
of transforming names using sameAs, which means the
same contents with different names in OWL. However,
name transformations by this method are not generally
sufficient. The reason is that every course offered by a
university does not correspond to that in the IEEE/ACM
Curricula as a 1 :1 relationship. To resolve this problem,
we propose another method using matrix of courses and
body of knowledge (BOK) with teaching hours in the
IEEE/ACM Curricula. This method is the way in which
courses are matched m : n via the total hours of BOK in
all units. We propose a credit transfer system using these
methods.

2. IEEE/ACM Curricula
IEEE/ACM Curricula exert an important effect on

curricula of universities in the area of computer science. In
these curricula, not only course names and topics, but also
classified BOK with teaching hours are divided into core
and elective hours. A pedagogical approach is considered,
too. BOK consists of the following 14 areas having the core
hours shown in parentheses. DS: Discrete Structures (43),
PF: Programming Fundamentals (38), AL: Algorithms and
Complexity (31), AR: Architecture and Organization (36),
OS: Operating Systems (18), NC: Net-Centric Computing
(15), PL: Programming Languages (21), HC:
Human-Computer Interaction (8), GV: Graphics and
Visual Computing (3), IS: Intelligent Systems (10), IM:
Information Management (10), SP: Social and Professional
Issues (16), SE: Software Engineering (31), and CN:
Computational Science and Numerical Methods (0). Core
hours represent the minimum teaching hours in each area.
These areas are divided into units denoted by adding a
numeric suffix to the area name. Each unit is subdivided
into topics. Taking one example, course CS103I (Data
Structures and Algorithms) comprises the following units.
DS5: Graphs and trees (2), PF3: Fundamental data
structures (12), PF4: Recursion (5), AL1: Basic algorithmc
analysis (2), AL2: Algorithmic strategies (3), AL3:
Fundamental computing algorithms (5), AL5: Basic
computability (1), PL1: Overview of programming
languages (1), PL6: Object-oriented programming (8), and
SE6: Software validation (1).

Curricula are based on IEEE/ACM Curricula in a
department of computer science at some universities;
other departments such as computer science seem to
produce curricula referring to IEEE/ACM Curricula.
Therefore, IEEE/ACM Curricula may be regarded as a de
facto standard and as the most influential ones in the field
of computer science.

3. OWL
OWL is an ontology description language to process Web

content information using machines automatically. OWL
was recommended in 2004 by W3C.

論文 DBSJ Letters Vol.4, No.4

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.4, No.4 2

 Fig. 1 Comparisons of curricula

The inclusion relationship of sets of resources can be
represented explicitly using OWL. The syntax of OWL is
usually represented as an RDF/XML style using tags.
However, we use a functional style syntax called abstract
syntax [5,8] for compact writing convenience. As an
example, the equivalence of two classes: Programming
course in University S and CS111I (Introduction to
Programming) course in IEEE/ACM Curricula, are
represented using OWL Full 3 in RDF/XML style as
follows.

<owl:Class rdf:ID=``Programming'' >
 <owl: sameAs rdf:resource=``CS111I'' />

 </owl: Class >

This is represented using abstract syntax as follows. 4

SameIndividual(Programming CS111I)

4. Credit Transfer Methods
To the present, credit transfer has been conducted using

1:1 course matching among curricula of sending and
receiving universities. Consequently, the laborious work of
1:1 matching is needed between curricula of two
institutions. The number of matchings is 2/)1(2 −= nnCn
among curricula of n institutions, as shown in Fig. 1(a).
To overcome this problem, we propose a credit transfer
system using IEEE/ACM Curricula as intermediate ones
in the area of computer science. The number of mutual
transformations is reduced to n in this system, as shown in
Fig. 1(b). In addition, we use OWL to aim at automatic
transformation among curricula.

4.1 Course Name Transformation

First, we propose a method using the notation of sameAs,
which means the same contents with different names in
OWL Full. A course name is not generally equivalent to
that in IEEE/ACM Curricula in a university. Credit
transfer means course name transformation between two
institutions in this case. As an example, if a Programming
course is equivalent to CS111I (Introduction to
Programming) at university S, we can describe this
equivalence using abstract syntax of OWL Full as follows.

3 A class is also regarded as an individual in OWL Full.
4 A function name of abstract syntax is not always equivalent to a
tag name in RDF/XML style at present.

 Fig. 2 Model of Curricula

SameIndividual(Programming CS111I)

Whereas, if Programming Techniques course is also
equivalent to CS111I at university T, we can describe this
as follows.

SameIndividual(Programming Techniques CS111I)

These two expressions, written using OWL, readily

engender the following result.
SameIndividual(Programming

 ProgrammingTechniques)

Only a simple transformation mechanism is required to
obtain the above result because only SameIndividual is
used in this method. When a student transfers from
university S to T, acquired courses are transformed to
course in IEEE/ACM Curricula at university S. Next,
these transformed courses are sent to university T.
Finally, these courses are transformed to courses in
university T. A prototype of this system was developed
using Jena[9]. In an actual system, the above descriptions
using OWL must be conducted preliminarily using
computer aided input tools in each university.

4.2 Course Name Transformation via BOK

Recently, outstanding characteristic is required in
curricula at universities. On the other side, systematic
study based on a standard curricula is demanded to foster
professionals. For these discrepant requirements, every
course is not always matched as 1:1 between that in
curricula at a university and IEEE/ACM Curricula. In
addition, each course comprises 40 classroom hours in
IEEE/ACM Curricula while a typical course consists of
about 20 classroom hours (1.5 h ×15 wk) in Japan. In this
case, a course in IEEE/ACM Curricula must be divided
into two courses as a vertical or horizontal division; i.e., a
course is divided into the first half units and the second
half ones, or entire units are divided into two. Therefore,
we propose another method in which courses are
corresponded to m : n via the total BOK hours in each unit
to cope with this problem.

We show a simple model of IEEE/ACM Curricula to
explain this method, as shown in Fig. 2: MC1 to MC3
represent course names and BOKA to BOKC represent

I: IEEE/ACM Curricula

(b) via intermediate

S

W T

V U

I

S

W T

V U

II

(a) 1:1 direct

S

W T

V U

S

W T

VV UU

total hours

BOKC(14)

BOKB(30)

BOKA(42)

area

course
BOK

8BOKCrest
404040

4BOKC2(2)
104BOKC1(12)

8BOKBrest
4BOKB3(4)

12BOKB2(12)
144BOKB1(14)

82BOKArest
46BOKA3(10)
410BOKA2(14)
216BOKA1(18)

unit

MC3MC2MC1

total hours

BOKC(14)

BOKB(30)

BOKA(42)

area

course
BOK

8BOKCrest
404040

4BOKC2(2)
104BOKC1(12)

8BOKBrest
4BOKB3(4)

12BOKB2(12)
144BOKB1(14)

82BOKArest
46BOKA3(10)
410BOKA2(14)
216BOKA1(18)

unit

MC3MC2MC1

j

i

論文 DBSJ Letters Vol.4, No.4

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.4, No.4 3

 (a) RDF/XML style syntax

(b) Abstract syntax

Fig. 3 Ontology of Curricula Example

area names of BOK. Each unit name is represented adding
a numeric suffix to the area name. However, the
remaining units in each area with only elective hours (i.e.,
without core hours) are represented by adding a suffix rest
to the unit name. Core hours are shown in parentheses in
units and areas. As an example, at least 42 core hours are
required in the BOK area of BOKA; at least 18, 14, and 10
hours are required for units of BOKA1, BOKA2, and
BOKA3, respectively. BOKArest is an optional unit.

Course MC1 consists of 16, 10, 6, 4, 4 hours in the unit of
BOKA1, BOKA2, BOKA3, BOKB1, and BOKC1,
respectively. MC1 and its class called CS_Course can be
represented using RDF/XML style syntax as shown in
Fig. 3(a) and represented using an abstract syntax as
shown in Fig. 3(b). A part of this description can be
visualized using an RDF graph visualization tool called
RDF Gravity [13] as shown in Fig. 4.

We assume a student transfers from university S to T.
Let dij be teaching hours of a course in each unit at
university S. The total teaching hours of each unit j is
represented as

 ∑
=

=
m

i
ijj dD

1

where m denotes the number of acquired courses at
university S.

 Fig. 4 RDF Graph Visualization

Every total teaching hours in each unit represented as

),,2,1(njDj L= is transferred from university S to T,
where n denotes the number of units in BOK.

Next, the corresponding courses are admitted to gain in
university T such that select a subset of courses

},,,{ 21 kccc L from a set of l courses in university T in
order to minimize the total difference of teaching hours in
every unit between university S and T. Let ijc be

teaching hours of a course in each unit and l denote the
number of courses in university T. This transformation
can be represented as the following Knapsack Problem
included in combinatorial optimization problems [10-12].

[Problem] Assign 0 or 1 to ix such that

∑∑
= =

=
n

j

l

i
iij xcfMaximize

1 1

),,2,1(
1

njDxctosubject j

l

i
iij L=≤∑

=

except for optional units denoted BOK*rest in Fig. 2.

The difference of this problem from the original
Knapsack Problem is that (1) each profit is equivalent to
each weight denoted by ijc and (2) the constraint of the
maximum capacity is divided into that of every BOK
denoted by),,2,1(njD j L= . This method is the way in
which courses are corresponded indirectly via total hours
of BOK. We could solve this problem using a
branch-and-bound method for several test cases as m=10,
n=10 and L=20.

<owl: Class rdf: ＩD= “CS_Course'' >
<rdfs: subClassOf >
<owl: Restriction >

<owl: onProperty rdf:resource= “#BOKA1_hours'' / >
<owl: allValuesFrom rdf:datatype= “&xsd; nonNegativeInteger‘’/ >
<owl: cardinality rdf:datatype= “&xsd; nonNegativeInteger‘’ > 1 </owl: cardinality>

</owl: Restriction >
</rdfs: subClassOf >

<rdfs: subClassOf >
<owl: Restriction >

<owl: onProperty rdf:resource= “#BOKA2_hours'' / >
<owl: allValuesFrom rdf:datatype= “&xsd; nonNegativeInteger‘’/ >
<owl: cardinality rdf:datatype= “&xsd; nonNegativeInteger‘’ > 1 </owl: cardinality>

</owl: Restriction >
</rdfs: subClassOf >

:
</owl: Class >

<owl:DatatypeProperty rdf:ID=“BOKA1_hours”>
<rdfs: domain rdf:resource=“#CS_Course”/>
<rdfs: range rdf:resource= “&xsd; nonNegativeInteger‘’/ >

</owl:DatatypeProperty>
:

<CS_Course rdf:ID=“MC1”>
<BOKA1_hours rdf:datatype = “&xsd; nonNegativeInteger‘’ > 16 </BOKA1_hours>
<BOKA2_hours rdf:datatype = “&xsd; nonNegativeInteger‘’ > 10 </BOKA2_hours>

:
</CS Course>

Class(CS_Course partial
restriction(BOKA1_hours allValuesFrom(xsd:nonNegativeInteger)

cardinality(1))
restriction(BOKA2_hours allValuesFrom(xsd:nonNegativeInteger)

cardinality(1))
:

)
DatatypeProperty(BOKA1_hours

domain(CS_Course) range(xsd:nonNegativeInteger))
:

Individual(MC1 type(CS_Course)
value(BOKA1_hours “16”^^ &xsd;nonNegativeInteger)
value(BOKA2_hours “10”^^ &xsd;nonNegativeInteger)

:
)

論文 DBSJ Letters Vol.4, No.4

――――――――――――――――――――――――――――――――――――

日本データベース学会 Letters Vol.4, No.4 4

5. Concluding Remarks
This paper proposed a credit transfer system using OWL

between universities in computer science to aim at
reducing the work of transfer. The number of mutual
comparisons and transformations is reduced from n(n-1)/2
to n via IEEE/ACM Curricula among n universities.
Advantages of OWL representation are strict definition of
classes to reduce errors and utility of common vocabulary
if inference is not used. Two transformation methods were
presented for practical use of IEEE/ACM Curricula, which
consist of matrix of courses and BOK with hours. First, we
used OWL to aim at transforming course names between
curricula automatically. However, this method is
insufficient because all courses do not correspond in 1 : 1
relationships with those in the IEEE/ACM Curricula.

Next, we proposed another method by which courses are
mapped m : n via the total hours of BOK. A prototype was
developed and several test cases could be solved using a
branch-and-bound method. However, heuristic methods
with relaxation techniques are considered to be suited for
a practical size problem. We have been developing
program using genetic algorithms. Further work is needed
to develop a support tool for data entry. Not only
constructing data using OWL, but also the consent of
usage of such an application is needed to diffuse ontology
languages like OWL.

[References]
[1] IEEE/ACM Computing Curricula 2001 Computer

Science: Final Report, IEEE Computer Society,2001.
[2] OWLOverview:http://www.w3c.org/TR/owl-features/
[3] OWL Guide: http://www.w3c.org/TR/owl-guide/
[4] OWL Reference: http://www.w3c.org/TR/owl-ref/
[5] OWL Semantics and Abstract Syntax:

http://www.w3c.org/TR/owl-absyn/
[6] A. Gomez-Perez, M. Fernandez-Lopetz, and O. Corcho :

“Ontological Engineering," Springer, 2004.
[7] D. Fensel : “Ontologies: A Silver Bullet for Knowledge

Management and Electronic Commerce: Second
Edition,” Springer, 2004.

[8] G. Antoniou and F. van Harmelen : “A Semantic Web
 Primer," MIT Press, 2004.

[9] Jena Homepage:http://jena.sourceforge.net/
[10] D. Du and P.M. Pardalos eds. : “Handbook of Combi-

 natorial Optimization," Kluwer Academic Publishers,
1998.

[11] C. R. Reeves ed. : “Modern Heuristic Techniques for
Combinatorial Problems," Alfred Waller Ltd.
U.K.,1993.

[12] S. M. Sait and H. Youssef: ``Iterative Computer
Algorithms with Applications in Engineering
- Solving Combinatorial Optimization Problems,"
IEEE Computer Society, 1999.

[13] RDF Gravity Homepage:
http://semweb.salzburgresearch.at/apps/rdf-gravity/
index.html

Jiaji GUO
Researcher, Graduated from Tokai University, received the
Bachelor Degree of Engineering. His research interests
include semantic Web and Web applications.
Hiromi KOBAYASHI
Professor, Department of Information Media Technology,
School of Information Technology and Electronics, Tokai
University. Graduated Doctor Engineering program from
Graduate School of Engineering, Shinshu University.
Dr. Eng., His research interests include semantic Web,
software engineering, and dependable systems.
Member of IEEE Computer Society, IEICE, IPSJ, etc.

