日本データベース学会

dbjapanメーリングリストアーカイブ(2022年)

[dbjapan] DBSJ Newsletter Vol.15, No.2: 日本データベース学会受賞特集号


┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
┃ 日本データベース学会 Newsletter
┃ 2022年5月号 ( Vol. 15, No. 2 )
┗━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

----
目次:日本データベース学会受賞特集号
----

1. 日本データベース学会功労賞
1-1. 日本データベース学会功労賞を受賞して
  石川 博 (東京都立大学 特別先導教授/特任教授/名誉教授)

2. 日本データベース学会若手功績賞
2-1. 日本データベース学会若手功績賞を受賞して 〜à la データベースコミュニティの皆様への感謝の気持ち〜
  手塚 太郎 (筑波大学 教授)

2-2. 日本データベース学会若手功績賞を受賞して 〜あの時の会場設営の学生は今〜
  渡邉 陽介 (名古屋大学 特任准教授)

2-3. ⽇本データベース学会若⼿功績賞を受賞して 〜若い才能を育てる場〜
  藤原 靖宏 (日本電信電話株式会社 特別研究員)

3. 日本データベース学会上林奨励賞
3-1. 日本データベース学会上林奨励賞を受賞して 〜フィジカルで解決〜
  大川 真耶 (日本電信電話株式会社)

3-2. 日本データベース学会上林奨励賞を受賞して 〜「新規性」x 「効率性」x 「問題の大きさ」〜
  董 于洋 (日本電気株式会社)

4. 日本データベース学会業績賞
4-1. 日本データベース学会業績賞を受賞して
  楽天グループ株式会社

=======================================================================

■1■ 日本データベース学会功労賞

日本データベース学会功労賞は、我が国のデータベース、メディアコンテンツ、情報
マネージメント、ソーシャルコンピューティングに関する科学・技術の振興をはかり、
もって学術、文化、ならびに産業の発展に大いに寄与された日本データベース学会の
会員の功労を賞するためのものです。

表彰規定や歴代の受賞者は以下のWebページからご確認いただけます。
日本データベース学会功労賞:http://dbsj.org/overview/award/#award_02

--------------------------------------------------------------------

■1−1■ 日本データベース学会功労賞を受賞して
  石川 博 (東京都立大学 特別先導教授/特任教授/名誉教授)

このたびは栄誉ある功労賞をいただき、心よりお礼を申し上げます。

講演では、人工知能とビッグデータの時代ともいわれる現代において新たな発想をつ
かむためにキーとなる、仮説を構築する方法について述べさせていただきました。

第5世代移動通信システム(5G)サービスの開始・普及に伴って、これまで以上に大
容量かつ高速のデータが生成されるようになってきて、一度に接続可能になるIoT
(Internet of Things)デバイスなどの数も飛躍的に増え、実世界データ・ソー
シャルデータ・オープンデータを含む多種多様なデータを組み合わせて取り扱う必要
性がますます大きくなってきました。

このようなデータはビッグデータと総称されます。ビッグデータを統合的に利用すれ
ば、新たに有用な知識や価値が生まれ、それらを通して知的でダイナミックな社会を
実現できるでしょう。それによって期待される利用分野には観光、モビリティ、医療・
科学など社会基盤的な応用が含まれます。

しかしながらビッグデータが与えられて、それらに対して人工知能やデータマイニング
などの先進的なITを適用すれば、自動的に有用な仮説が得られるわけではありません。
特に先進的な応用では、複数種類のデータやすでに得られた仮説の組み合わせで統合的
な仮説が得られる場合が多いですが、異なるデータをどう組み合わせれば有用な仮説が
得られるかは必ずしも自明ではありません。

多くのビッグデータのユースケース(具体的な応用例)の観察に基づいて、ビッグデー
タを活用する応用情報システムを構築するために必要な基盤技術となる統合的な仮説生
成の方法を、データ分析(人工知能、機械学習、データマイニング)とデータ管理
(データベース)という別々に発展してきた技術を調和的に利用したアプローチを念頭
に、そのいくつかを説明しました。

まず仮説の定義について述べた後、仮説生成のヒントになるリサーチクエスチョンにつ
いて説明しました。基本的な仮説生成に役立つ推論形式として、演繹、帰納、もっとも
らしい推論、類推、問題解決の手法があります。また科学の諸分野(特に天文学)にお
いて仮説がどのように作られてきたかを手掛かりにして、主に回帰という方法を説明し
ました。

次に統合的仮説生成の方法論(差分、結合、重ね合わせ、和分)について、時間や空間
の差分に注目したユースケースを通して、その一端を説明しました。

これからはビッグデータと人工知能を応用した現代の情報システムの理解と受容にとっ
て重要となる仮説の解釈にも研究の幅を広げていきたいと思います。また大学の学生さん
だけでなく広く一般のかたにも研究成果をお伝えしていきたいと思います。さらに英語に
よる学術出版にも挑戦したいと思います。

まことに僭越ながら、ぜひ皆様にも様々なことに興味を持ち、様々な課題に取り組んで研
究開発を進めていただくように願っております。

最後にあらためて関係者の皆様に感謝を申し上げたいと存じます。

--------------------------------------------------------------------

■2■ 日本データベース学会若手功績賞

日本データベース学会若手功績賞は、本会の活動に多大なる貢献をしてきた若手会員を
賞するもので、本会の対象とする研究分野において優れた実績を有する場合もその対象
となります。

表彰規定や歴代の受賞者は以下のWebページからご確認いただけます。
日本データベース学会若手功績賞:http://dbsj.org/overview/award/#award_03

--------------------------------------------------------------------

■2−1■ 日本データベース学会若手功績賞を受賞して 〜à la データベースコミュニティの皆様への感謝の気持ち〜
  手塚 太郎 (筑波大学 教授)

このたびは日本データベース学会若手功績賞を受賞でき、大変嬉しく思っております。

思い起こせば駆け出しの頃、2005年のデータ工学ワークショップ(DEWS2005)における
最優秀プレゼンテーション賞から始まり、2012年の上林奨励賞、そして今回の若手功績賞
と、研究者人生の節目ごとにデータベースコミュニティから賞をいただくことができており、
励みになると共に、身の引き締まる思いもしています。

この二年間の新型コロナの流行により、皆様と対面で会いする機会も減ってしまいましたが、
過去のDEIMやSIGMOD-J、WebDB Forum、KJDBのイベントなどを懐かしく思い出しています。

近年のデータベース学会のイベントはオンライン化によって参加者が大きく増えたとのこ
とで、ふたたび対面で開催されるようになった時、どのような規模の集まりになっている
のか、楽しみなところです。

恩師の先生がある時、「量の違いは質の違い」という話をされていたのをふと思い出しま
した。それはvery large databaseのように、データやトランザクションの量が増える
につれて、質の異なる新しい問題や可能性が生じてくるという文脈での話でしたが、同じ
ことがコミュニティについても言えるのではないかと思っています。

いまや日本データベース学会は情報科学分野における最大の学会のひとつかと思いますが、
関わっている多くの先生方が作り出す魅力的なイベントに人が集まり、それがさらに人の繋
がりを生み、the rich gets richerが起きていっているように思います。その発信力や
調整力は今後、分野の発展のために大きな力となるのではないでしょうか。

私はこれまでいくつかの大学で働いてきましたが、どの大学にも知っている先生がいるとい
うのは大変心強いことでした。データベースコミュニティを通して得られた繋がりはとても
大きな財産です。

お世話になった方ひとりひとりのお名前を挙げていきますと切りがありませんので(そして
どこかで止めなくてはなりませんので)控えさせていただきますが、恩師の先生方や過去と
現在の同僚の皆様、研究室の卒業生、そして日本データベース学会を支えていただいている
皆様に深く感謝しています。

またコロナが明けて、皆様にお目にかかれる日を楽しみにしています。

--------------------------------------------------------------------

■2−2■ 日本データベース学会若手功績賞を受賞して 〜あの時の会場設営の学生は今〜
  渡邉 陽介 (名古屋大学 特任准教授)

この度、日本データベース学会若手功績賞を頂きまして、大変光栄に思います。
ご推薦下さいました皆様と、これまでご指導頂きました皆様に感謝申し上げます。

正直に白状いたしますと、今回の受賞のご連絡を事務局の方から最初にメールで頂いたとき
は、突然だったため全く信じておらず、誰かと間違えて送ったのではないですか、と返信
してしまいました。その節は大変失礼いたしました。

改めてデータベースコミュニティ内での活動の振り返りますと、最初のころはまだ筑波大の
学生で、ACM SIGMOD日本支部の講演会の設営をお手伝いするような仕事をしていました。
仕事の傍らで、講演会にて国際会議報告をされる先生方の話を、どこか遠い世界の出来事の
ように聞いていたように思います。この後もSIGMOD日本支部とは何かとご縁があり、ヘルプ
デスクの担当や、幹事をやらせて頂くこともありました。最終的には自分も国際会議
SIGMOD2011に派遣される側になろうとは、学生当時からすると思ってもみないことでした。
多くの貴重な経験をさせて頂いたと思っております。

ここ最近は名古屋大学にて、自動運転車を対象にしたストリーム型の分散データベースの
研究をしております。自動運転車は自身の周辺環境を認識するための多数のセンサを積んで
おり、走行時は絶えず周りをスキャンしながら移動します。毎秒膨大なデータを生み出し
続ける、巨大な動く情報源となっており、将来的にはこれが複数で街中を走り回る時代が
来るといわれています。今後、データベース技術の応用が強く求められていくであろうと
考えておりまして、自動車分野、交通分野へのデータベース技術のプレゼンスを高めていけ
たらと思い、日々活動しております。

最後にもう一度、栄誉ある賞を頂きまして誠にありがとうございました。受賞を契機に皆様
ともこれまで以上にアクティブに研究活動を続けていけましたら幸いです。

--------------------------------------------------------------------

■2−3■ ⽇本データベース学会若⼿功績賞を受賞して 〜若い才能を育てる場〜
  藤原 靖宏 (日本電信電話株式会社 特別研究員)

この度は、⽇本データベース学会若⼿功績賞という⼤変名誉な賞を頂くことができ、誠に
光栄に存じます。ご推薦頂いた先⽣⽅をはじめ、⽇本データベース学会の皆様に⼼より御礼
申し上げます。またこれまでご指導頂きました皆様にもこの場をお借りして深く御礼申し
上げます。

私がデータベース分野の研究をはじめたのは入社2年目のNTT研究所の組織改編がきっかけ
でした。入社1年目はメディア流通を研究する部署に所属していたのですが、当時の部長
から「技術を身に着けてください」とデータベースを研究している組織に異動になりこの
分野に関わることとなりました。しかし全く畑違いの部署への異動だったため、会社の
図書館にこもって当時の研究会論文などを読み漁り、何とかこの分野の研究にキャッチ
アップしようと必死でした。データベース分野の大規模な学会への参加は沖縄で開催さ
れた DEWS 2006 が最初になりますが、論文で名前を拝見していた先生方が一同に介し
研究発表されているのを直接見るのは非常に刺激的で、またそこで得た多くの方々との
つながりはその後の研究の糧になりました。

自分がはじめて学会運営に携わったのは電子情報通信学会のデータ工学特集号における
査読委員になります。それまで他の方の論文を評価する仕事を行ったことがなく非常に
戸惑いましたが、編集委員や編集幹事の方々の親身なサポートによりその職務を全うする
ことができました。特集号との関わりはその後自分自身が編集委員・幹事となるまで続き、
学会運営を行うのに必要な知識などを学ぶ良い経験となりました。また日本データベース
学会Newsletterの編集委員・幹事としてインターンシップ体験記と若手研究者特集の
企画を立ち上げる機会を頂きました。これらの企画の狙いは20代の方々にデータベース
コミュニティの魅力を伝えようというものでした。コミュニティにおける若い研究者を
増やし、その活性化を図るというのは決して簡単なことではないと思いますが、今後も
その思いは⼤切にしたいと思います。

データベース分野において専門外であった自分が研究者として続けられているのは、若い
ときにこのデータベースコミュニティの一員になり、様々な方々に育てて頂いたからです。
最近の学会はオンライン開催になる傾向がありますが、若い研究者の方には機会があれば
学会に参加して様々な方々と知り合いになって欲しいと思います。日本のデータベース
コミュニティは様々な専門性を受け止める高い包容力があり、若い頃に親しくなった方々は
その後に様々な岐路に立ったときに味方になってもらえる非常に価値あるものになります。

データベースの研究について右も左もわからなかった自分が⽇本データベース学会若⼿功績賞
という名誉ある賞を頂いたことは非常に感慨深いものがあります。これからも研究活動に
励み、データベースコミュニティに恩返しができればと思います。今後ともよろしくお願い
します。

--------------------------------------------------------------------

■3■ 日本データベース学会上林奨励賞

上林奨励賞は、故 上林弥彦 日本データベース学会初代会長のご遺族からご寄贈頂いた資
金を活用し、データベース、メディアコンテンツ、情報マネージメント、ソーシャルコン
ピューティングに関する研究や技術に対して国際的に優れた発表を行い、かつ本会の活動
に貢献してきた若手会員を奨励するためのものです。

表彰規定や歴代の受賞者は以下のWebページからご確認いただけます。
日本データベース学会上林奨励賞:http://dbsj.org/overview/award/#award_04

--------------------------------------------------------------------

■3−1■ 日本データベース学会上林奨励賞を受賞して 〜フィジカルで解決〜
  大川 真耶 (日本電信電話株式会社)

この度は、「上林奨励賞」という栄えある賞をいただき、大変光栄に存じます。日本データ
ベース学会の皆様、審査頂いた先生方、これまでお世話になった皆様に心より御礼申し上げ
ます。

今回受賞理由に挙げていただいたKDD19、KDD21の論文では、SNSにおける情報伝搬、感染
症や犯罪の発生等の社会現象を対象として、それらの事象を高精度に予測する手法を提案
しています。社会現象の背後のメカニズムを理解し、高精度な事象の予測を行うことは、
防犯・防疫・マーケティングなど様々な実応用で役立つのはもちろん、社会現象の理解と
いう観点からも興味深い問題だと感じています。そのため個人的な思い入れも強く、KDD
投稿に向けては数ヶ月前から入念に準備を重ねました。そのおかげか、どちらも一度目の
投稿で採択されました。アイデアの面白さをいったん信じ、実データを用いた定性評価に
時間をかけてデータマイニングの観点からの面白さを出したこと、原稿の推敲を重ねたこと
が採択に繋がったと実感しています。

私は元々物理学専攻の素粒子実験系の研究室の出身で、NTTへの入社を機にデータマイニング
・機械学習分野の研究に携わるようになりました。入社以来、この分野でやっていけるのか?
という疑問が常にあり、薄氷の上を歩いているような気持ちでいました。そんな中で、周り
の方が陰に陽に研究の道に導いてくださり、今日「上林奨励賞」という栄えある賞をいた
だくことができました。共著の皆様、NTTや大学でお世話になった皆様、学会などで
出会った皆様に改めて感謝いたします。余談になりますが、実験がうまくいかず人生への
不安が増した時はランニング、サーフィンなど、とにかく運動することを心がけていました。
もしこれを読んでくださっている方の中で似た状況の方がいたら、フィジカルな解決策を
探してみるのもおすすめです。

今後、データマイニング・機械学習分野における学術貢献を目指してますます精進するのは
もちろん、これまでお世話になった方のように後進の方々のサポートをすることで
コミュニティ全体への貢献ができるよう、頑張って参ります。

--------------------------------------------------------------------

■3−2■ 日本データベース学会上林奨励賞を受賞して 〜「新規性」x 「効率性」x 「問題の大きさ」〜
  董 于洋 (日本電気株式会社)

この度は、栄誉ある日本データベース学会上林奨励賞を頂き、誠にありがとうございます。
まず、最初にお世話になった方々に感謝を申し上げます。筑波大学大学院時代の指導教員
である北川先生、陳先生、共同研究でお世話になった大阪大学の肖先生、NECの同僚である
小山田さん、竹岡さん、この賞に私を推薦くださった方々に、深くお礼を申し上げます。

私は2014年から2019年まで筑波大学の修士・博士課程に在籍し、空間データベースの
効率的な検索について研究していました。博士卒業後はNECのデータサイエンス研究所に
入社し、データの高品質化を目的とした大規模データの探索・統合に関する研究を行って
います。私が所属している部署では、外部データの利活用によってデータを高品質化する
技術開発に取り組んでおり、NEC Data Enrichment [1]などのサービスをリリースして
います。受賞の一つ目のきっかけとなったVLDB Journalの論文は大学院時代の成果であり、
大規模かつ時間依存性のある位置データとテキスト情報を対象とした継続的なtop-kクエリ
の研究でした。受賞の二つ目のきっかけとなったICDE21の論文[2]はNEC入社後に行った
研究であり、大規模なデータレークから手元のテーブルと結合可能なテーブルを高速に発見
・検索するアルゴリズムを提案しました。また、SIGIR22 demo[3][4]に最近採択された
研究では、機械学習の予測精度向上を目的として、手元のテーブルをリッチにする外部
テーブルの探索、結合、整形まで行うEnd-to-Endのテーブル拡張システムを提案しました。

コンピュータサイエンスの研究についての個人的な見解になりますが、論文を読みながら
研究テーマを考える際、或いは、実験結果を纏め論文執筆を開始する際に、「これは良い
研究なのだろうか」と自問自答することがあると思います。私にとっての「良い研究」の
定義は、「新規な手法」を用いて「効率的」に「問題」を解決することだと考えています。
この定義に従えば、「新規性」x 「効率性」x 「問題の大きさ」という掛け算でその
研究の価値を計算することができます。ここで、「問題の大きさ」とは、この問題を解決
することでどれくらいの規模の人・分野・応用事例などに貢献するかを指します。「効率性」
とは相対的な概念であり、既存研究と比較してどのぐらいの性能向上が達成できているか
を示すものです。良く誤解されるのですが「新規性」についても相対的な概念です。なぜ
なら、過去に提案された新規性のある手法も、一般的に知られた後では新規性が失われる
からです。一方で、既に他の分野で提案されている手法を、別の分野に適用することで新た
に実現出来たことがあるとすれば、それは「新規性」があると考えられます[5]。仮に、
これらの三要素に「1, 10, 100」の3パターンでスコアをつけて研究価値を計算すると、
1000点以上で良い研究、10000点以上でトップ会議に採択されるレベルの研究に値すると
私は考えています。ポイントは、この点数の稼ぎ方の組み合わせは自由であるという点です。
例えば、一般的な問題の大きさ(問題の大きさ:10点)に対して、既存手法の拡張方式を
提案する場合(新規性:10点)でも、性能が著しく向上する場合(効率性:100点)には、
大きな研究価値があると言えます。同様に、性能の向上は顕著ではない場合(効率性:10点)
でも、問題に対して斬新な技術を提案している(新規性:100点)のであれば、同等に
価値があるものです。個人的な見解ではありますが、皆様の研究価値を見定める際の一助に
なれば幸いです。

本受賞を励みに引き続き研究に努めて参ります。今後ともご指導、ご支援のほどよろしく
お願い申し上げます。

[1] NEC Data Enrichment: ソリューション・サービス. https://jpn.nec.com/solution/dataenrichment/index.html
[2] Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional Similarity-Based Approach. ICDE21. https://arxiv.org/abs/2010.13273
[3] Table Enrichment System for machine learning. SIGIR22 (demo). https://arxiv.org/abs/2204.08235
[4] Table Enrichment System Demo. https://youtu.be/HXikNjblUwU
[5] 例えば、BERT に代表されるmasked language modelは、自然言語処理(NLP)分野の事前学習において何年も前から用いられていますが、
コンピューター・ビジョン (CV) 分野においては同様の仕組みを用いたMasked Autoencoderが昨年提案され注目を集めた。
--------------------------------------------------------------------

■4■ 日本データベース学会業績賞

業績賞は、我が国のデータベース、メディアコンテンツ、情報マネージメント、ソーシャル
コンピューティングに関する科学・技術の産業化をはかり、もって産業の発展に大いに寄与
された日本データベース学会(以下本会と略す)の維持会員の業績を賞するためのものである。

表彰規定や歴代の受賞者は以下のWebページからご確認いただけます。
日本データベース学会業績賞:https://dbsj.org/overview/award/#award_05

--------------------------------------------------------------------

■4−1■ 日本データベース学会業績賞を受賞して
  楽天グループ株式会社

この度は、日本データベース学会業績賞という大変栄誉ある賞をいただき、大変光栄に
存じております。ご推薦くださった先生方をはじめとする、日本データベース学会の皆様に、
心より感謝を申し上げます。

データに関わる研究を実施する際、実データを対象とした方が、効率的であり、研究者の
研究意欲も高く保つことができると思っております。それは、世の中のニーズが的確に把握
することができるだけではなく、提案手法の有効性をよりダイレクトに把握することが
できるためです。ただ、大学に籍を置いている先生や学生の皆様が、企業が保有する実
データにアクセスをするためには、共同研究契約を締結しなければならないなど、なか
なか容易ではございません。

このような問題を解決するために、2010年より、弊社のデータの公開を開始させていただ
きました。今現在、楽天市場や楽天トラベルをはじめとする4サービス11データセットを
公開させていただいております。近年では、弊社のデータセットだけではなく、弊社の
データセットを基にして生成されたアノテーションデータも、データセットと共に公開を
させていただいております。おかげさまで、2022年3月現在、延べ283の研究機関の皆様
に、弊社のデータセットをご活用いただいており、これまでに300を超える論文が執筆され
ております。さらには、企業データを対象としたDBSJ学生会員向けのデータ解析コンテスト
「DBSJデータチャレンジ」の企画・運営にも、携わらせていただきました。弊社データ
セットをご活用いただいている皆様、DBSJデータチャレンジに参加していただいた皆様、
誠にありがとうございます。

ただ、この一連の活動は、弊社のみで実施しているわけではございません。データの配布や
事務手続きには、NII様やALAGIN様の多大なるご協力をいただいております。特に、NIIの
大山先生、大須賀先生には大変お世話になっております。また、DBSJデータチャレンジの
企画・運営は、リクルートの櫻井様と二人三脚で実施させていただきました。この場を
お借りして、御礼を申し上げます。誠にありがとうございます。

この度の授賞により、弊社としましては、上述の活動をエンカレッジしていただいたと認識
しております。引き続き、楽天のユーザ様、クライアント様にご迷惑をおかけしない範囲で、
弊社のデータの更新、拡充をしていくことで、日本データベース学会、データに関連する
研究コミュニティに貢献をして参りたいと存じておりますので、今後とも何卒よろしく
お願いもうしあげます。

--------------------------------------------------------------------

編集  北山 大輔 (日本データベース学会 電子広報編集委員会 担当編集委員、工学院大学)

本号ならびに DBSJ Newsletter に対するご意見あるいは次号以降に期待する内容について
のご意見がございましたら news-com [at] dbsj.org までお寄せください。

--------------------------------------------------------------------

--
Daisuke Kitayama
Interactive Media Lab.
Department of Information Systems and Applied Mathematics
Faculty of Informatics
Kogakuin University
Associate Professor, Ph.D
+81 3-3340-2683
kitayama [at] cc.kogakuin.ac.jp

北山大輔
工学院大学 情報学部 システム数理学科
インタラクティブメディア研究室
准教授 博士(環境人間学)
03-3340-2683(内線:2814)
kitayama [at] cc.kogakuin.ac.jp